Dispersion in Gemstones

Another property which may be made use of in deciding the identity of certain gems is that called dispersion. We saw on the Refraction tab that light in entering a stone from the air changes its path (refraction), and it was explained that many minerals cause light that enters them, to divide and proceed along two different paths (double refraction). In addition though, light of the various colors (red, orange, yellow, green, blue, and violet) is refracted differently – violet being bent most sharply, red least, and the other colors to intermediate degrees. The cut in Figure 1 below represents roughly and in an exaggerated manner the effect we are discussing.

Figure 1: Dispersion

 

In a cut stone this separation of light of different colors, or dispersion of light, as it is called, results in the reflection of each of the colors separately from the steep sloping back facets of the stone. If almost any clear, colorless facetted stone is placed in the sunlight and a card held before it to receive the reflections, it will be seen that rainbow-like reflections appear on the card. These spectra, as they are called, are caused by the dispersion of light. With a diamond the spectra will be very brilliant and of vivid coloring, and the red will be widely separated from the blue. With white sapphire or white topaz, or with rock crystal (quartz), the spectra will be less vivid – they will appear in pairs (due to the double refraction of these minerals), and the red and blue will be near together i.e. the spectra will be short. This shortness in the latter cases is due to the small dispersive power of the three minerals mentioned. Paste (lead glass) gives fairly vivid spectra, and they are single like those from diamond, as glass is singly refracting. The dispersion of the heavy lead glass approaches that of diamond. The decolorized zircon has a dispersion well up toward that of diamond and gives fairly vivid spectra on a card, but they are double, as zircon is doubly refracting. Sphene and the demantoid garnet both have very high dispersive power, exceeding the diamond in this respect. As they are both colored stones (sphene is usually yellowish, sometimes greenish or brown), the vividness of their color-play is much diminished by absorption of light within them. So also the color-play of a deeply colored fancy diamond is diminished by absorption.

Dispersion as a Test of the Identity of a Gem. We may now consider how an acquaintance with the dispersive powers of the various stones can be used in distinguishing them. If a stone has high dispersive power it will exhibit “fire” i.e. the various colors will be so widely separated within the stone, and hence reflected out so widely separated, that they will fall on the eye (as on the card above) in separate layers, and vivid flashes of red or yellow or other colors will be seen. Such stones as the white sapphire (and others of small dispersion), however, while separating the various colors appreciably as seen reflected on a card, do not sufficiently separate them to produce the “fire” effect when the light falls on the eye. This is because the various colors, being very near together in this case, cross the eye so rapidly, when the stone is moved, that they blend their effect and the eye regards the light that falls upon it as white. We have here a ready means of distinguishing the diamond from most other colorless gems. The trained diamond expert relies (probably unconsciously) upon the dispersive effect (or “fire”) nearly as much as upon the adamantine luster, in telling at a glance whether a stone is or is not a diamond. Of all natural colorless stones, the only one likely to mislead the expert in this respect is the whitened zircon, which has almost adamantine luster and in addition nearly as high dispersive power as diamond. However, zircon is doubly refracting (strongly so), and the division of the spectra which results (each facet producing two instead of only one) weakens the “fire” so that even the best zircon is a bit “sleepy” as compared with even an ordinary diamond.

We may now consider how an acquaintance with the dispersive powers of the various stones can be used in distinguishing them. If a stone has high dispersive power it will exhibit “fire” i.e. the various colors will be so widely separated within the stone, and hence reflected out so widely separated, that they will fall on the eye (as on the card above) in separate layers, and vivid flashes of red or yellow or other colors will be seen. Such stones as the white sapphire (and others of small dispersion), however, while separating the various colors appreciably as seen reflected on a card, do not sufficiently separate them to produce the “fire” effect when the light falls on the eye. This is because the various colors, being very near together in this case, cross the eye so rapidly, when the stone is moved, that they blend their effect and the eye regards the light that falls upon it as white. We have here a ready means of distinguishing the diamond from most other colorless gems. The trained diamond expert relies (probably unconsciously) upon the dispersive effect (or “fire”) nearly as much as upon the adamantine luster, in telling at a glance whether a stone is or is not a diamond. Of all natural colorless stones, the only one likely to mislead the expert in this respect is the whitened zircon, which has almost adamantine luster and in addition nearly as high dispersive power as diamond. However, zircon is doubly refracting (strongly so), and the division of the spectra which results (each facet producing two instead of only one) weakens the “fire” so that even the best zircon is a bit “sleepy” as compared with even an ordinary diamond.

In addition to providing a ready means of identifying the diamond, a high degree of dispersion in a stone of pronounced color would lead one to consider sphene, demantoid garnet (if green), and zircon (which might be reddish, yellowish, brown, or of other colors), and if the stone did not agree with these in its other properties glass should be suspected.

A good way to note the degree of dispersion, aside from the sunlight-card method, is to look at the stone from the back while holding it up to the light (daylight). Stones of high dispersive power will display vivid color play in this position. Glass imitations of rubies, emeralds, amethysts, etc., will display altogether too much dispersion for the natural gems.